

b Find load current by using Thevenin's theorem for the following circuit where 6M RL= 3Ω

UNIT-II

- **a** Derive an expression for RMS values of sine wave form.
 - An alternating current is expressed as I = 14.14 sin 314t. Determine (i). Maximum current (ii). RMS Current (iii). Frequency (iv). Instantaneous current

when t = 0.02msec

b

6M

4M

		OR	
5	a	Explain resonance for series RLC circuit and derive the equation for resonant	5M
	b	A series RLC circuit of R=50 ohms, L= j25 ohms. Determine the value of	5M
		UNIT-III	
6	a	Explain the various losses in a transformer.	5M
	b	The efficiency of a 200 KVA,1- Φ transformer is 98% when operating at full-	5 M
		load,0.8 p.f lagging, the iron loss in the transformer is 400 W. Calculate: (i)Full	
		load copper loss (ii) Half load copper loss.	
		OR	
7	Wł	hat are three phase transformer connections and explain it?	10M
		UNIT-IV	
8	Ex	plain the various method of speed control of separately excited DC motor.	10M
		OR	
9	Ex	plain the construction details and working principle of Alternator.	10M
		UNIT-V	
10	Ex	plain in detail different methods used for improvement of power factor.	10M
		OR	
11	a	How many types of batteries are there?	5M
	b	Explain the characteristics of batteries?	5 M

END